Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Frontiers in Environmental Science ; 2023.
Article in English | ProQuest Central | ID: covidwho-2274417

ABSTRACT

Aerosol pollution in urban areas is highly variable due to numerous single emission sources such as automobiles, industrial and commercial activities as well as domestic heating, but also due to complex building structures redirecting air mass flows, producing leeward and windward turbulences and resuspension effects. In this publication, it is shown that one or even few aerosol monitoring sites are not able to reflect these complex patterns. In summer 2019, aerosol pollution was recorded in high spatial resolution during six night and daytime tours with a mobile sensor platform on a trailer pulled by a bicycle. Particle mass loadings showed a high variability with PM10 values ranging from 1.3 to 221 µg m-3 and PM2.5 values from 0.7 to 69.0 µg m-3. Geostatistics were used to calculate respective models of the spatial distributions of PM2.5 and PM10. The resulting maps depict the variability of aerosol concentrations within the urban space. These spatial distribution models delineate the distributions without cutting out the built-up structures. Elsewise, the overall spatial patterns do not become visible because of being sharply interrupted by those outcuts in the resulting maps. Thus, the spatial maps allow to identify most affected urban areas and are not restricted to the street space. Furthermore, this method provides an insight to potentially affected areas, and thus can be used to develop counter measures. It is evident that the spatial aerosol patterns cannot be directly derived from the main wind direction, but result far more from an interplay between main wind direction, built-up patterns and distribution of pollution sources. Not all pollution sources are directly obvious and more research has to be carried out to explain the micro-scale variations of spatial aerosol distribution patterns. In addition, since aerosol load in the atmosphere is a severe issue for health and well-being of city residents more attention has to be paid to these local inhomogeneities.

2.
Applied Sciences ; 13(3):1556, 2023.
Article in English | ProQuest Central | ID: covidwho-2273948

ABSTRACT

Super-resolution microscopy has been recently applied to understand the 3D topology of chromatin at an intermediated genomic scale (kilobases to a few megabases), as this corresponds to a sub-diffraction spatial scale crucial for the regulation of gene transcription. In this context, polycomb proteins are very renowned gene repressors that organize into the multiprotein complexes Polycomb Repressor Complex 1 (PRC1) and 2 (PRC2). PRC1 and PRC2 operate onto the chromatin according to a complex mechanism, which was recently recapitulated into a working model. Here, we present a functional colocalization study at 100–140 nm spatial resolution targeting PRC1 and PRC2 as well as the histone mark H3K27me3 by Image Scanning Microscopy (ISM). ISM offers a more flexible alternative to diffraction-unlimited SRMs such as STORM and STED, and it is perfectly suited to investigate the mesoscale of PRC assembly. Our data suggest a partially simultaneous effort of PRC1 and PRC2 in locally shaping the chromatin topology.

3.
Geophysical Research Letters ; 50(4), 2023.
Article in English | ProQuest Central | ID: covidwho-2287472

ABSTRACT

Declines in eelgrass, an important and widespread coastal habitat, are associated with wasting disease in recent outbreaks on the Pacific coast of North America. This study presents a novel method for mapping and predicting wasting disease using Unoccupied Aerial Vehicle (UAV) with low‐altitude autonomous imaging of visible bands. We conducted UAV mapping and sampling in intertidal eelgrass beds across multiple sites in Alaska, British Columbia, and California. We designed and implemented a UAV low‐altitude mapping protocol to detect disease prevalence and validated against in situ results. Our analysis revealed that green leaf area index derived from UAV imagery was a strong and significant (inverse) predictor of spatial distribution and severity of wasting disease measured on the ground, especially for regions with extensive disease infection. This study highlights a novel, efficient, and portable method to investigate seagrass disease at landscape scales across geographic regions and conditions.Alternate abstract:Plain Language SummaryDiseases of marine organisms are increasing in many regions worldwide, therefore, efficient time‐series monitoring is critical for understanding the dynamics of disease and examining its progression in time to implement management interventions. In the first study of its kind, we use high‐resolution Unoccupied Aerial Vehicle (UAV) imagery collected to detect disease at 12 sites across the North‐East Pacific coast of North America spanning 18 degrees of latitude. The low altitude UAV visible‐bands imagery achieved 1.5 cm spatial resolution, and analysis was performed at the seagrass leaf scale based on object‐oriented image analysis. Our findings suggest that drone mapping of coastal plants may substantially increase the scale of disease risk assessments in nearshore habitats and further our understanding of seagrass meadow spatial‐temporal dynamics. These can be scaled up by searching for environmental signals of the pathogen, for example, with surveillance of wastewater for signs of Covid in human populations. This application could easily apply to other areas to construct a high‐resolution monitoring network for seagrass conservation.

4.
IOP Conference Series Earth and Environmental Science ; 1122(1):012018, 2022.
Article in English | ProQuest Central | ID: covidwho-2188016

ABSTRACT

There is now a clear disparity between major cities and villages located in marginal areas of Italy. Progressive depopulation of inland areas and urban polarization such as consolidated territorial dynamics are difficult to dampen and adapt to the new paradigms of sustainable territorial development, although they have been abruptly redirected by the Covid 19 pandemic. The instability created by this pandemic offers the opportunity to redefine new parameters of intervention and new scenarios for the development of territories in relation to the new needs of decentralization and physical distancing. The project "Renaissance of villages for the revitalization of marginal areas” aims to create the conditions to repopulate and rebalance shrinking territories by establishing new centers of attractiveness. This project envisages the active involvement of municipalities and local authorities with the aims at implementing the multi-sectoral analysis of the tangible and intangible values of territories. It intends to develop an interactive web dashboard to be provided to municipalities in order to create both a learning environment and a spatial decision support system for future local policy actions towards a sustainable participatory local development. In this way, it is proposed a functional method with a place-based approach to managing the existing territorial complexity through innovative models of territorial governance and policymaking, among them the effective implementation of participatory and multi-actor visions of territorial development. Specifically, this paper provides the Italian villages' archetypes through the quantitative spatial cluster multivariate analysis, which is the basis for the construction of the dashboard. To cluster the villages, the main variables have been identified, assesses, and mapped. The results are fundamental in order to define the future scenarios for each archetype assessing the Key Performance indicators (KPIs).

5.
Atmospheric Chemistry and Physics ; 22(15):10319-10351, 2022.
Article in English | ProQuest Central | ID: covidwho-1994379

ABSTRACT

The aim of this paper is to highlight how TROPOspheric Monitoring Instrument (TROPOMI) trace gas data can best be used and interpreted to understand event-based impacts on air quality from regional to city scales around the globe. For this study, we present the observed changes in the atmospheric column amounts of five trace gases (NO2, SO2, CO, HCHO, and CHOCHO) detected by the Sentinel-5P TROPOMI instrument and driven by reductions in anthropogenic emissions due to COVID-19 lockdown measures in 2020. We report clear COVID-19-related decreases in TROPOMI NO2 column amounts on all continents. For megacities, reductions in column amounts of tropospheric NO2 range between 14 % and 63 %. For China and India, supported by NO2 observations, where the primary source of anthropogenic SO2 is coal-fired power generation, we were able to detect sector-specific emission changes using the SO2 data. For HCHO and CHOCHO, we consistently observe anthropogenic changes in 2-week-averaged column amounts over China and India during the early phases of the lockdown periods. That these variations over such a short timescale are detectable from space is due to the high resolution and improved sensitivity of the TROPOMI instrument. For CO, we observe a small reduction over China, which is in concert with the other trace gas reductions observed during lockdown;however, large interannual differences prevent firm conclusions from being drawn. The joint analysis of COVID-19-lockdown-driven reductions in satellite-observed trace gas column amounts using the latest operational and scientific retrieval techniques for five species concomitantly is unprecedented. However, the meteorologically and seasonally driven variability of the five trace gases does not allow for drawing fully quantitative conclusions on the reduction in anthropogenic emissions based on TROPOMI observations alone. We anticipate that in future the combined use of inverse modeling techniques with the high spatial resolution data from S5P/TROPOMI for all observed trace gases presented here will yield a significantly improved sector-specific, space-based analysis of the impact of COVID-19 lockdown measures as compared to other existing satellite observations. Such analyses will further enhance the scientific impact and societal relevance of the TROPOMI mission.

6.
Buildings ; 12(5):682, 2022.
Article in English | ProQuest Central | ID: covidwho-1871537

ABSTRACT

In recent years, the spatial renovation of university libraries in various countries has focused on readers’ needs and followed the trend to develop learning spaces as a primary spatial form. In this study, we reviewed six spatial dimensions affecting student users’ learning experience. Specifically, we built a theory- and practice-based conceptual analysis framework to measure users’ satisfaction with recent spatial renovations at three university libraries in Wuhan, China. We used SPSS statistical software to conduct multiple linear regression analyses of spatial satisfaction. The findings show that five spatial dimensions significantly affect students’ satisfaction with library space, namely, service facility availability, quality of interior design, physical environment elements, spatial diversity, and learning space controllability. Service facility availability is the most critical factor affecting spatial satisfaction. In this study, we present empirical, evidence-based space elements that enhance user satisfaction with library spaces, and provide targeted design suggestions for future library space renovation and the optimization of space allocation and expansion of space services at university libraries in China.

7.
Sustainability ; 14(9):5406, 2022.
Article in English | ProQuest Central | ID: covidwho-1843048

ABSTRACT

This paper aims to update the exposure to flood risk in a catchment area of the Community of Madrid (Spain) linked to primary sector activities, albeit affected by the urban expansion of the capital. This research starts with the updating of the flood inventory, encompassing episodes documented between 1629 and 2020. The inadequate occupation of the territory means that floods continue to cause significant damage nowadays. It is worth highlighting the two recent floods (2019) that occurred just 15 days apart and caused serious damage to several towns in the basin. The areas at risk of flooding are obtained from the National Floodplain Mapping System, and the maximum and minimum floodable volume in the sector of the Tajuña River basin with the highest exposure to flooding has been calculated. The Sentinel 2 image in false colour (RGB bands 11-2-3, 11-8-3 and 12-11-8) and its transformation to colour properties (Intensity, Hue and Saturation) has made it possible to determine the extension of the riparian vegetation and the irrigated crops located in the alluvial plain. The SPOT 6 image with higher spatial resolution has allowed us to update the mapping of buildings located in areas at risk of flooding. Finally, based on cadastral data, a detailed cartography of built-up areas in areas at risk of flooding is provided. They affect buildings built mainly between the 1960s and 1990s, although the most recent buildings are built on agricultural land in the alluvial plain, even though current regulations prevent the occupation of these lands.

8.
Applied Sciences ; 12(6):3190, 2022.
Article in English | ProQuest Central | ID: covidwho-1760321

ABSTRACT

Visual acuity (VA) is a measure of the ability to distinguish shapes and details of objects at a given distance and is a measure of the spatial resolution of the visual system. Vision is one of the basic health indicators closely related to a person’s quality of life. It is one of the first basic tests done when an eye disease develops. VA is usually measured by using a Snellen chart or E-chart from a specific distance. However, in some cases, such as the unconsciousness of patients or diseases, i.e., dementia, it can be impossible to measure the VA using such traditional chart-based methodologies. This paper provides a machine learning-based VA measurement methodology that determines VA only based on fundus images. In particular, the levels of VA, conventionally divided into 11 levels, are grouped into four classes and three machine learning algorithms, one SVM model and two CNN models, are combined into an ensemble method in order to predict the corresponding VA level from a fundus image. Based on a performance evaluation conducted using randomly selected 4000 fundus images, we confirm that our ensemble method can estimate with 82.4% of the average accuracy for four classes of VA levels, in which each class of Class 1 to Class 4 identifies the level of VA with 88.5%, 58.8%, 88%, and 94.3%, respectively. To the best of our knowledge, this is the first paper on VA measurements based on fundus images using deep machine learning.

9.
Atmospheric Measurement Techniques ; 15(5):1415-1438, 2022.
Article in English | ProQuest Central | ID: covidwho-1744756

ABSTRACT

TROPOMI (TROPOspheric Monitoring Instrument) measurements of tropospheric NO2 columns provide powerful information on emissions of air pollution by ships on open sea. This information is potentially useful for authorities to help determine the (non-)compliance of ships with increasingly stringent NOx emission regulations. We find that the information quality is improved further by recent upgrades in the TROPOMI cloud retrieval and an optimal data selection. We show that the superior spatial resolution of TROPOMI allows for the detection of several lanes of NO2 pollution ranging from the Aegean Sea near Greece to the Skagerrak in Scandinavia, which have not been detected with other satellite instruments before. Additionally, we demonstrate that under conditions of sun glint TROPOMI's vertical sensitivity to NO2 in the marine boundary layer increases by up to 60 %. The benefits of sun glint are most prominent under clear-sky situations when sea surface winds are low but slightly above zero (±2 m s-1). Beyond spatial resolution and sun glint, we examine for the first time the impact of the recently improved cloud algorithm on the TROPOMI NO2 retrieval quality, both over sea and over land. We find that the new FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A band) wide algorithm leads to 50 hPa lower cloud pressures, correcting a known high bias, and produces 1–4×1015 molec. cm-2 higher retrieved NO2 columns, thereby at least partially correcting for the previously reported low bias in the TROPOMI NO2 product. By training an artificial neural network on the four available periods with standard and FRESCO+ wide test retrievals, we develop a historic, consistent TROPOMI NO2 data set spanning the years 2019 and 2020. This improved data set shows stronger (35 %–75 %) and sharper (10 %–35 %) shipping NO2 signals compared to co-sampled measurements from OMI. We apply our improved data set to investigate the impact of the COVID-19 pandemic on ship NO2 pollution over European seas and find indications that NOx emissions from ships reduced by 10 %–20 % during the beginning of the COVID-19 pandemic in 2020. The reductions in ship NO2 pollution start in March–April 2020, in line with changes in shipping activity inferred from automatic identification system (AIS) data on ship location, speed, and engine.

10.
Atmospheric Chemistry and Physics ; 22(4):2745-2767, 2022.
Article in English | ProQuest Central | ID: covidwho-1716002

ABSTRACT

Satellite observations of the high-resolution TROPOspheric Monitoring Instrument (TROPOMI) on Sentinel-5 Precursor can be used to observe nitrogen dioxide (NO2) at city scales to quantify short time variability of nitrogen oxide (NOx) emissions and lifetimes on a daily and seasonal basis. In this study, 2 years of TROPOMI tropospheric NO2 columns, having a spatial resolution of up to 3.5 km × 5.5 km, have been analyzed together with wind and ozone data. NOx lifetimes and emission fluxes are estimated for 50 different NOx sources comprising cities, isolated power plants, industrial regions, oil fields, and regions with a mix of sources distributed around the world. The retrieved NOx emissions are in agreement with other TROPOMI-based estimates and reproduce the variability seen in power plant stack measurements but are in general lower than the analyzed stack measurements and emission inventory results. Separation into seasons shows a clear seasonal dependence of NOx emissions with in general the highest emissions during winter, except for isolated power plants and especially sources in hot desert climates, where the opposite is found. The NOx lifetime shows a systematic latitudinal dependence with an increase in lifetime from 2 to 8 h with latitude but only a weak seasonal dependence. For most of the 50 sources including the city of Wuhan in China, a clear weekly pattern of NOx emissions is found, with weekend-to-weekday ratios of up to 0.5 but with a high variability for the different locations. During the Covid-19 lockdown period in 2020, strong reductions in the NOx emissions were observed for New Delhi, Buenos Aires, and Madrid.

11.
Remote Sensing ; 14(2):415, 2022.
Article in English | ProQuest Central | ID: covidwho-1636170

ABSTRACT

The leaf area index (LAI), a valuable variable for assessing vine vigor, reflects nutrient concentrations in vineyards and assists in precise management, including fertilization, improving yield, quality, and vineyard uniformity. Although some vegetation indices (VIs) have been successfully used to assess LAI variations, they are unsuitable for vineyards of different types and structures. By calibrating the light extinction coefficient of a digital photography algorithm for proximal LAI measurements, this study aimed to develop VI-LAI models for pergola-trained vineyards based on high-resolution RGB and multispectral images captured by an unmanned aerial vehicle (UAV). The models were developed by comparing five machine learning (ML) methods, and a robust ensemble model was proposed using the five models as base learners. The results showed that the ensemble model outperformed the base models. The highest R2 and lowest RMSE values that were obtained using the best combination of VIs with multispectral data were 0.899 and 0.434, respectively;those obtained using the RGB data were 0.825 and 0.547, respectively. By improving the results by feature selection, ML methods performed better with multispectral data than with RGB images, and better with higher spatial resolution data than with lower resolution data. LAI variations can be monitored efficiently and accurately for large areas of pergola-trained vineyards using this framework.

SELECTION OF CITATIONS
SEARCH DETAIL